a2 United States Patent

Eliseev et al.

US009230106B2

US 9,230,106 B2
*Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR DETECTING
MALICIOUS SOFTWARE USING MALWARE
TRIGGER SCENARIOS IN A MODIFIED
COMPUTER ENVIRONMENT

8,069,372 B2 11/2011 Natvig

(Continued)

FOREIGN PATENT DOCUMENTS

(71) Applicant: Kaspersky Lab ZAO, Moscow (RU) RU 91213 12010
(72) Inventors: Evgeny Y. Eliseev, Moscow (RU); WO 2012135192 A2 1072012
Victor V. Yablokov, Moscow (RU) OTHER PUBLICATIONS
(73) Assignee: Kaspersky Lab AQ, Moscow (RU)
(*) Notice: Subject to any disclaimer, the term of this Bn}llml_ey’ _DaVlC} ot al., AUtomtlcally Identifying Tngger'l_)aseg
patent is extended or adjusted under 35 ISe a\ilgr ;I(l)ll\;[a “lfre’. 20(;8% SpmgferIUS’ 36f Ilp'lféigh[ret'r/l;vj{
USC. 154(b) by 0 days. ep. s]. Retrieved from the Internet: . http://link.
springer.com/chapter/10.1007/978-0-387-68768-1_4 >.*
Tlhi.s patent is subject to a terminal dis- (Continued)
claimer.
(21) Appl. No.: 14/607,778 . . .
) Primary Examiner — Hadi Armouche
(22) Filed: Jan. 28,2015 Assistant Examiner — Malcolm Cribbs
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Arent Fox LLP; Michael
US 2015/0143521 A1~ May 21, 2015 Fainberg
Related U.S. Application Data (57) ABSTRACT
(63) Continuation-in-part of application No. 14/052,718, . .
filed on Oct. 12, 2013, now Pat. No. 8,978,141, Disclosed system and methods for m?llware testing of soft-
ware programs. An example method includes storing a plu-
(30) Foreign Application Priority Data rality of malware trigger scenarios specifying different sets of
malware trigger events known to trigger malicious behavior
Jun. 28, 2013 (RU) 2013129555 in software programs; in response to thaining a software
(51) Int.CL program, modifying a computer environment for operating
GOG6F 21/56 (2013.01) the software program by creating malware trigger events
(52) US.Cl ’ associated with a selected one of the plurality of malware
S0 trigger scenarios; analyzing an execution of the software pro-
CPCcccee. GO6F 21/56 (2013.01); GO6F 21/566 : : : :
> gram in the modified computer environment in response to
. . . (2013.01) the malware trigger events; upon detecting that the software
(58) Field of Classification Search program exhibits malicious behavior, performing remedial
None actions on the software program; and upon detecting that the
See application file for complete search history. software program exhibits no malicious behavior, selecting a
different malware trigger scenario from the plurality of mal-
(56) References Cited ware trigger scenarios for malware testing of the software
program.
U.S. PATENT DOCUMENTS
7,614,084 B2 11/2009 Monastyrsky et al. 20 Claims, 8 Drawing Sheets

101
"'\\ Application
M T
: ™ Level 3 :
i
| i i
:nozb Lovel 2 : 102
RN f~
i l §
: 102¢ ;
: ™ !
| ¥ |
! 1024 {
H fevei N }
L {
- ST

Hardware

US 9,230,106 B2

Page 2
(56) References Cited 2015/0193619 AL* 72015 Lantz ..o GOSGF 21/51
713/189
U.S. PATENT DOCUMENTS
OTHER PUBLICATIONS
g’?g?’gzg Eé 411%83 Is{ﬁiétlhk(:a\t] :f al. B. M. Ruvinskaya et al. “Heuristic methods of malware detection
2003/0159063 Al 8/2003 Apfelbaum et al. based on scripts” http.:ildspace,nbuv.gov,uaihandle/
2009/0288167 Al 11/2009 Freericks et al. 12345078916920. Published Dec. 30, 2008, p. 197, par. 1 from the
%8}?;8}2%3‘9‘2 ﬁ} ;gg}? CB}hOSh ettali top; p. 198, pars, 5-6 from the top; p. 199. par, 1 from the bottom and
owen et al. . B .
2012/0222173 Al 82012 Williams of al. p- 200 par. 1 from the top; p. 201, pars. 2-3 from the top; p. 205. pars.
2013/0007883 Al 1/2013 Zaitsev 2,3, and 5 from the bottom.
2013/0104234 Al 4/2013 Northup . .
2013/0145463 Al 6/2013 Ghosh et al. * cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 8 US 9,230,106 B2

100
<
r‘f!
101
"""" ™, § Application
pt
108 !
g \\ Level 3 §
! ;
e A i
§ 102b vl 2 P12
evel 2 Y
; ™ i
| ! ;
; 102¢ §
: _\ i
i §
E ¥ {
{1024 {
p Level N ;
: \ §
Forn v v v e e e e e e
¥

K Hardware

Fig. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 8 US 9,230,106 B2

____\
EQK Appliaction ;0(;2:;?;
102
N\

Level 1 M Handier .@m@,
A 201 T s s e e
¥ : -
102 A \. |
-—\ Level 2 bl Handler ;M!
Y F0T S e
102 * —\\i b
_\ i M% Handier M
A :
¥ 201 S o o e e
¥ -

Gog A anaar Raaa aaaas .}

102 i ' @
\\ Level N imeeiind Handler M

. i]

E AN S

¥ { e g

103 . "
—\\ Hardware beegel Handler ?ﬁmw

.

Fig. 2A

U.S. Patent Jan. 5,2016 Sheet 3 of 8 US 9,230,106 B2

2008

_X\ 202

il \ Control
Application S Module
&
102a t
P s s e
102]
m“’w\ Level 1 {immb-
 Bgpemppmeppmemaed WIS |
102a 'é
\i_ I
102\; Level 2 ;*-—-—-—-—-—-—-—-—-—-—-—-»
{3 i
1023
. A S
102 |
. ‘ N
; i
w2a &
g coone ol anen anian el w-‘-'vi
102]
Level N {o@‘w--m-wmm-&w
i .&M T e e
103a ,?
s s o s s 2y
103 ¢ !
: \%% Hardware ;-oa%
el

US 9,230,106 B2

Sheet 4 of 8

Jan. 5§, 2016

U.S. Patent

nsnr shnsr sasss sssss sssns wesss

,
%,

b oymsseny 1 ! w
P osymduwey !
! ﬁ,.. } dooafies

|
|
MJ..

™,
“,

AN Y ANy

o

|

BP0
sishgpuy
lopneyay

1 syeidia) |
e N\

£ 814

s ey W s Y

w JO3RI3LU3)

i

o o o o o G

PP oupusrg |

0%

2

{
{
!
{
{
!
!

oo

108

R

Bl E

M aseyeier) |

aseqgeieg
DLIBLBIS

2| PO
AT

5y eraneas

“

a0¢

itfyrrrscrsmmersmmdipe] UOLEIAY §,

TS A A AN A Y AR A

g

b eaT

Pl]
heve. annen e ween eene [.m .\.f!\\t\\é
W ee0T

e

gl | ssempien

M jana

7 (9A37 S

T @27 ",

A
pa
i

S 101

07

U.S. Patent Jan. 5,2016

a1

Y

01

\\\'\'\'\'\'\\

101

3

Sheet 5 of 8

101

Y

101

US 9,230,106 B2

_ Appkéaatimn \
\"‘1
Appl Appl App3 Appd 3
Application Framework
Activity Window Content .) -
. . o Wiaw System
Manager Manager Providers :
404 _ .
-\\ Package Teleghony Resourse Location Notification _
' Manager Manager Manager Managet Manager
Libraries Android Rustime
—— i _ 403
‘\;urfdce . Media . satite P
402 anager ramewor Core Libraries ;
\\ - 405
OpenGl FreaType WebKit Dalvik Virtual | 7 |
fachine
SGL 58L Libe
401
........ }'\
- ‘ — T
Dss.piay Can_wara Flagh i\.z‘iemcw Audio Driver
driver Driver Driver
Keypad P Display Power
Driver Wifh Drivey driver Management
Linux Kernel

Fig. 4

US 9,230,106 B2

Sheet 6 of 8

Jan. 5, 2016

U.S. Patent

H Qm W\\\\\\\ oo anain

90¢

i

G 34

BNPONINGD /
wmmmm‘
; ABALN 3
i MONSH f/fi;
y .
\ [£03
g oo F A
i AUIBIA ; BUYIRYY |
, # P jengap pineg &M FRNBIA ARG /rln
w ﬁ ’ 5o
IS
’ F707
H _ JEBRUBINSING &
/ : h
] m U Y
. A m
PO § ey “ .
S1SAELY m jeuey g ; B uoueiddy K
sseqeieq | aseqeleq H ¥ 10T
sgpdway | opeuAdS

N

0as

U.S. Patent Jan. 5,2016 Sheet 7 of 8 US 9,230,106 B2

Provide a plurality of v 605
malware trigger scenarios

3

r

<)
Execute a software program / 10
in a computer environment

A

¥

Create one or more activation events / G615
as specified in one of the plurality
of malware trigger scenarios

F

Maonitore execution events of the software | " 620
program in the computer environment

Yes

‘ 630

Perform remedial
actions on the
software program

oftware program exhibits
matlicious behaviour?

625

No

i / 635

Sedect another malware trigger
scenario for malware testing of
the software program

US 9,230,106 B2

Sheet 8 of 8

Jan. 5, 2016

L "Bid
G2 (s)eomaq
jeinydus 4
(¢} [+) g7 eweq weiboid
04 (s)a0meq
inding eeq (s)pod {syarug {sjeaug
RS celilely $81Q peeH 57 sweibold
o7 (s)esmeq /suonesyddy
nduy eleg
]
01 sng - e
- 05 wesAg ¢ S0
UL piomisp , e Wy
S803 oIpn
(s)psen preQOlpY ¢ 4 T]
MIOMION 17
=T Z¢ soig NOM
GO ssaneadg % vy V.]
NdD o
pael) sopideis AIOLUBIN LUDISAS
OHUC
09 Jojuopy § remdwio)d

U.S. Patent

US 9,230,106 B2

1
SYSTEM AND METHOD FOR DETECTING
MALICIOUS SOFTWARE USING MALWARE
TRIGGER SCENARIOS IN A MODIFIED
COMPUTER ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 14/052,718, filed on Oct. 12, 2013, which claims benefit
of priority under 35 U.S.C. 119(a)-(d) to a Russian Applica-
tionNo. 2013129555 filed on Jun. 28, 2013, both of which are
incorporated by reference herein.

TECHNICAL FIELD

The disclosure relates generally to the field of information
security, and more specifically to systems, methods and com-
puter program products for detecting malicious software by
performing behavioral malware analysis using malware trig-
ger scenarios.

BACKGROUND

The amount of malicious software, also known as malware,
is steadily growing. The number of computing platforms for
which malware is created is also increasing, and malicious
applications for Android OS and Apple iOS are no longer a
rarity. Therefore, antivirus companies are faced with new
challenges to create new methods of detecting malware.

Known methods for detection of malicious software,
which were successful in detecting malware in the past, often
fail to detect new types of malware. Currently, the most popu-
lar malware detection methods include: heuristic analysis,
signature analysis, behavioural analysis, and hash sum analy-
sis. The signature and hash sum techniques are well suited for
detecting known malware (i.e., software that has already been
investigated and a specimen of which has been entered in a
database of malicious software). However, these techniques
may fail to detect modified malware code. The heuristic
analysis overcomes this shortcoming, but may be ineffective
in detecting obfuscated malware. The behavioural analysis
often proves most effective in detecting modified malware,
but even this method has a number of shortcomings. For
example, in order to analyze behaviour of a program using
this method, the program needs to be triggered first, which
also constitutes the major shortcoming of behavioural analy-
sis, since malicious software, before being detected, can
already inflict harm to the system on which it has been trig-
gered. Moreover, the behavioural analysis adversely affects
the productivity of the system, as a whole, and the tested
program in particular.

Therefore, there is a need to improve behavioural malware
detection technique.

SUMMARY

Disclosed systems, methods and computer program prod-
ucts for detecting malicious software by performing behav-
ioral malware analysis using malware trigger scenarios. In
one example aspect, a method includes storing a plurality of
malware trigger scenarios specifying different sets of mal-
ware trigger events known to trigger malicious behaviour in
software programs; in response to obtaining a software pro-
gram, modifying a computer environment for operating the
software program by creating malware trigger events associ-
ated with a selected one of the plurality of malware trigger

15

35

40

45

55

2

scenarios; analyzing an execution of the software program in
the modified computer environment in response to the mal-
ware trigger events; upon detecting that the software program
exhibits malicious behaviour, performing remedial actions on
the software program, identifying one or more malware trig-
ger events triggering the malicious behaviour, and placing the
identified malware trigger events in an optimized malware
trigger scenario of popular events; and upon detecting that the
software program exhibits no malicious behaviour, selecting
a different malware trigger scenario from the plurality of
malware trigger scenarios for malware testing of the software
program.

In one example, the remedial actions comprise blocking
program application programming interface (API) function
calls and quarantining the software program exhibiting mali-
cious behaviour.

In one example, the method further comprises executing
the software program in the modified computer environment
using a plurality of interrupt handlers operable to monitor
application events, operating system (OS) events, and hard-
ware events of the computer environment.

In one example, the method further comprises: creating
corresponding malware trigger events associated with each of
remaining malware trigger scenarios; and repeating the
execution of the software program in the modified computer
environment in response to the corresponding malware trig-
ger events.

In one example, executing the software program in the
modified computer environment comprises analyzing appli-
cation program interface (API) functions of the software pro-
gram and selecting from the plurality of malware trigger
scenarios a malware trigger scenario having similar API calls.

In one example, the method further comprises determining
and storing malicious behaviour templates in an order of
popularity, each template having corresponding malware
trigger events, wherein executing the software program in the
modified computer environment comprises identifying a tem-
plate among the malicious behaviour templates based on the
malware trigger events, and analyzing the execution of the
software program in the modified computer environment
based on defined characteristics of the template.

In one example, the method further comprises determining
an order of popularity of the plurality of malware trigger
scenarios; and repeating the execution of the software pro-
gram in the modified computer environment in accordance
with the determined order of popularity of the plurality of
malware trigger scenarios.

In one example, a system for malware testing of software
programs comprises: a data store storing a plurality of mal-
ware trigger scenarios specifying different sets of malware
trigger events known to trigger malicious behaviour in soft-
ware programs; a hardware processor coupled to the data
store and configured to: modify, in response to obtaining a
software program, a computer environment for operating the
software program by creating malware trigger events associ-
ated with a selected one of the plurality of malware trigger
scenarios; analyze an execution of the software program in
the modified computer environment in response to the mal-
ware trigger events; upon detecting that the software program
exhibits malicious behaviour, perform remedial actions on
the software program, identify one or more malware trigger
events triggering the malicious behaviour, and place the iden-
tified malware trigger events in an optimized malware trigger
scenario of popular events; and upon detecting that the soft-
ware program exhibits no malicious behaviour, select a dif-
ferent malware trigger scenario from the plurality of malware
trigger scenarios for malware testing of the software program.

US 9,230,106 B2

3

In one example, a computer program product stored on a
non-transitory computer-readable storage medium comprises
computer-executable instructions for malware testing of soft-
ware programs, including instructions for: storing a plurality
of malware trigger scenarios specifying different sets of mal-
ware trigger events known to trigger malicious behaviour in
software programs; in response to obtaining a software pro-
gram, modifying a computer environment for operating the
software program by creating malware trigger events associ-
ated with a selected one of the plurality of malware trigger
scenarios; analyzing an execution of the software program in
the modified computer environment in response to the mal-
ware trigger events; upon detecting that the software program
exhibits malicious behaviour, performing, by the hardware
processor, remedial actions on the software program, identi-
fying one or more malware trigger events triggering the mali-
cious behaviour, and placing the identified malware trigger
events in an optimized malware trigger scenario of popular
events; and upon detecting that the software program exhibits
no malicious behaviour, selecting a different malware trigger
scenario from the plurality of malware trigger scenarios for
malware testing of the software program.

The above simplified summary of example aspects serves
to provide a basic understanding of the invention. This sum-
mary is not an extensive overview of all contemplated
aspects, and is intended to neither identify key or critical
elements of all aspects nor delineate the scope of any or all
aspects of the invention. Its sole purpose is to present one or
more aspects in a simplified form as a prelude to the more
detailed description of the invention that follows. To the
accomplishment of the foregoing, the one or more aspects of
the invention include the features described and particularly
pointed out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated into
and constitute a part of this specification, illustrate one or
more example aspects of the invention and, together with the
detailed description, serve to explain their principles and
implementations.

FIG. 1 is a diagram illustrating an example architecture of
a multilevel computer system;

FIGS. 2A and 2B are diagrams illustrating examples of
modified architectures of the computer system according to
aspects of the present invention;

FIG. 3 is a diagram illustrating a system for detection of
malicious software using malware trigger scenarios accord-
ing to aspects of the present invention;

FIG. 4 is a diagram illustrating example architecture of a
mobile operating system Android OS which may be utilized
to implement aspects of the present invention;

FIG. 5is a diagram illustrating an example interaction of an
application with a mobile platform having a malware detec-
tion system according to aspects of the present invention.

FIG. 6 is a flow diagram illustrating an example method for
detecting malware using malware detection system in accor-
dance with aspects of the present invention.

FIG. 7 is a block diagram illustrating an example general-
purpose computer system in accordance with aspects of the
present invention.

DETAILED DESCRIPTION

Example aspects of the present invention are described
herein in the context of system, method and computer pro-
gram product for detecting malicious software by performing

10

15

20

25

30

35

40

45

50

55

60

65

4

behavioral malware analysis using malware trigger scenarios.
Those of ordinary skill in the art will realize that the following
description is illustrative only and is not intended to be in any
way limiting. Other aspects will readily suggest themselves to
those skilled in the art having the benefit of this disclosure.
Reference will now be made in detail to implementations of
the example aspects as illustrated in the accompanying draw-
ings. The same reference indicators will be used to the extent
possible throughout the drawings and the following descrip-
tion to refer to the same or like items.

The disclosed malware detection techniques provide broad
control over events of execution of a tested program at difter-
ent levels of a computer system, including software, OS and
hardware, by utilizing malicious behaviour scenarios for
detecting activation of harmful functions of the program. The
term “hardware”, as used herein, includes central and periph-
eral hardware of the computer device, such as CPUs, storage
devices, communication modules (e.g., GSM, Bluetooth),
etc. The computer system that is used to support the execution
of tested applications and programs is called the program
execution environment. The computer system may have a
multilevel architecture shown in FIG. 1 described next.

FIG. 1 shows example configuration of a computer system
100 comprising an application 101, multilevel operating sys-
tem (OS) 102 and hardware 103. During its execution, an
application 101 makes calls to API (application programming
interface) functions of the OS 102 to perform certain action
on the hardware 103. The OS 102 performs a large number of
steps involving the complex multilevel architecture of the OS
to pass the API function call from the application 101 to the
hardware 103, after which the result of the execution of the
APT function is returned to the application 101. The OS levels
may include, but not limited to application framework, runt-
ime environment, libraries, security services, kernel, etc.

To understand execution of the application 101, it is desir-
able to monitor all levels of architecture of the OS 102 and
hardware 103, if possible. In one example aspect, this can be
achieved by modifying elements of the levels of architecture
of'the OS 102 and adding new elements the monitor each level
of the computer architecture. This modification to the com-
puter system 100 will not only allow monitoring of the execu-
tion of the application 101 at all levels of its execution on the
computer system 100, but will also allow to control the execu-
tion of the application 101 at any level of the system archi-
tecture with the possibility of halting the execution of the
application 101 at any of the levels of the computer architec-
ture.

FIGS. 2A and 2B show example modifications of the com-
puter system 100 of FIG. 1 according to various aspects of the
present invention. FIG. 2A shows an example system modi-
fication 200A in which supplemental elements—handlers
201—are added at different level of the OS 102. The original
elements of the levels may be minimally modified by, for
example, placing interrupts in the original elements of each
OS level, while the functions that process these interrupts
may be exported to the separate handlers 201. The functions
contained in the handler 201 may monitor the working of the
modified OS level, control the working of the modified OS
level, record information about events of execution of appli-
cation 101 at each modified level, and provide to the control
module 202 access to the recorded information about events
of'execution of application 101 at each level. The functions of
the control module 202 will described below. FIG. 2B show
another example system modification 200B according to
another aspect, in which the functions described in the pre-
ceding example as being exported to the separate handlers
201 may be performed directly in the altered elements of

US 9,230,106 B2

5
levels 102a and 103a. Control of the handler 201 can be
exerted directly by the functions built into the handler 201 or
by the control module 202. The control module 202 may
reside at the level of application 101 and have access the
recoded information.

Therefore, the modified computer systems 200A and 200B
allow collection of information about behaviour of applica-
tions 101 executed on these systems at multiple levels of the
system architecture. In one aspect, system modification may
also include adding a function capable of halting the execu-
tion of the applications at any architecture level or introduc-
ing corrections in their execution. For this reason, the modi-
fied computer systems 200 A and 200B may control execution
of the application 101 and prohibit execution of the applica-
tion 101 in case harmful or malicious actions of application
101 are detected.

Malicious software is highly diverse: it varies in its func-
tion, purpose, and the nature of its interaction with the com-
puter devices on which it runs. Even after starting an appli-
cation 101 in the systems 200A and 200B and obtaining
information on events caused by the execution of the appli-
cation 101 at each system level, it is still may not be possible
to determine whether the tested application is harmful or
clean. This is primarily because the application may require a
number of conditions (i.e., malware trigger events) to activate
its malicious functionality. Such events may include, but not
limited to: communication ports being switched on, specific
type of active windows open, network connection status, date
and time, type of device on which the investigated application
was started, operating system version, presence of other
applications on the device, current location of the device,
active actions of the user, incoming calls and SMS, device
turned on, rebooting of the device, and so on.

Therefore, to detect a malicious program it may be desir-
able to not only monitor the software and hardware of the
computer device on which this program executes, but also to
create certain conditions in the environment of the application
while it is being executed. FIG. 3 shows one example imple-
mentation of a system for malware detection, which utilizes
malware trigger scenarios for detection of malicious soft-
ware. As used herein, a “scenario” refers to a list of malware
trigger events that trigger malicious activity in the tested
application. In one example aspect, the scenario may be
executed by the control module 202 of system 300.

Particularly, in one aspect, the control module 202 of sys-
tem 300 may be configured to select a malware trigger sce-
nario from scenario database 302, start application 101 on the
system 300, and create malware trigger events described in
the selected scenario. The control module 202 may have
feedback with the levels 102a and 1034, and the execution of
the scenario may involve the creation by the levels 102a¢ and
103a of the malware trigger events under the command of the
control module 202. During its execution, the application 101
may cause a series of events on each level 102a¢ and 103a
involved in the execution of the application 101. The func-
tions at modified levels 102a and 103« (or in handlers 201 of
FIG. 2A) may record information about events of execution
of'the application 101 and the control module 202 may accu-
mulate this information. The collected information may be
analyzed by the behaviour analysis module 301. If as a result
of'the analysis, the behaviour of the application is found to be
harmful, the control module 202 may take remedial action,
such as halting the execution of the application 101 and place
it in quarantine. If no harmful activity was detected in the
behaviour of the application 101, the control module 202 may
select another scenario from database 302 for testing of the
application. This cycle may continue until the application 101

10

15

20

25

30

35

40

45

50

55

60

65

6

produces a harmful activity, or until the control module 202
uses up all available scenarios.

In one example aspect, the scenario database 302 is gener-
ated on remote antivirus server and transmitted to the user
computer system 300 by means of an update.

In one example aspect, the system 300 may also include a
collector 303, which gathers information on which events in
the environment 102a and 103e¢ which trigger malicious
activity in the application 101. Based on the data gathered by
the collector 303, the scenario generator 304 may create
optimized scenarios and transmit them to the scenario data-
base 302. Optimization of scenarios is used to improve the
performance of the malware detection system. In one
example aspect, optimization of scenarios is performed as
follows: On the basis of the information collected by the
collector 303, a list of popular malware trigger events is
compiled for different malware trigger scenarios. The sce-
nario generator 304 then forms the popular scenarios from the
list of popular malware trigger events and transmits them to
the scenario database 302. In the scenario database 302, the
scenarios are ordered in order of popularity, so that control
module 202 selects most popular scenarios first for testing
applications 101 for presence of malware followed by less
popular scenarios.

In one example aspect, the information gathered by the
collector 303 may also be used by a template classifier 305
which classifies malicious behaviour templates used by the
behaviour analysis module 301 for purpose of conducing
malware analysis of the tested application. The template clas-
sifier 305 determines which malware behaviour templates
work with which malware trigger events and establishes the
popularity of the malicious behaviour templates. In the tem-
plate database 306, the templates may be placed in order of
popularity of use as established by the template classifier 305.
For example, there is a malware trigger event of an incoming
call, and the most popular programs activating its malicious
function in such a scenario (incoming call) are, for example,
spyware programs, which track the user’s incoming calls and
reroute this information to the hacker. The template classifier
305 immediately matches up this malware trigger event (i.e.,
incoming call) with the behaviour template characteristic of
this type of malware. If in the analysis of the programs trig-
gered by the indicated malware trigger scenario no corre-
sponding behaviour template was identified, all remaining
templates may be used for the malware analysis. Such a
solution makes it possible to increase the operating efficiency
of the malware detection system 300.

FIG. 4 illustrates an example mobile platform, Android
OS, on which the system and methods for detection of com-
puter malware using malware trigger scenarios may be used.
The Android architecture is based on a Linux kernel 401. The
kernel 401 is responsible for such system services as security
management, memory, processes; it includes a network stack
and a model of drivers. The next level in the hierarchical
structure is libraries 402 written in C/C++ and used by dif-
ferent components of the OS. An important part of the archi-
tecture is Android Runtime (i.e., the application execution
environment) 403. The execution environment consists of a
Java virtual machine Dalvik 405 and a set of basic libraries.
Dalvik executes files in a special format, .dex, optimized for
devices with a small amount of memory. The basic libraries
are written in Java language and include a large set of classes
which support a broad range of functional capabilities. The
next level is the Application Framework 404. This level is a
tool box that is used by all applications. At the top of the
hierarchy are the Applications (the application level) 406. The
platform has a peculiarity in that applications are executed in

US 9,230,106 B2

7

a sandbox (arigorously monitored set of resources for execut-
ing a guest program) and do not have the right to modify
components situated on the same level or lower levels.

FIG. 5 shows a sequence of interaction of the components
of the mobile platform 400 of FIG. 4 when sending an SMS
message. To send an SMS message, the application 101 uses
a corresponding method implemented in the component SMS
Manager 501; said function will be executed by the virtual
machine Dalvik 405, which will execute a call up of the GSM
Driver 502 driver functions to perform the requested action,
and this will issue a command to the module GSM Module
503, as a result of which the message will be sent.

In one example aspect, the Android Runtime level, and
specifically, its virtual machine Dalvik 405, may be modified
according to principles disclosed herein, to generate a virtual
machine DAlvik 405a, in order to test applications 101 for
presence of malware. Various malware trigger events may be
created in the environment 405a (e.g., simulating the pressing
of the buttons of the application interface, arrival of new
messages or calls, rebooting of the system, change of network
registration, and so on). The application 101 is started by
control module 202 in a separate process not having a visible
user interface and not having any system authorizations, i.e.,
the application is not able to cause any harm to the environ-
ment. The virtual machine Dalvik 4054 records information
on the events caused by the tested application 101 in response
to the various malware trigger events created by the control
module 202. The recorded information is analyzed by the
analysis module 301. If, on the basis of the analysis by com-
paring the recorded information on behaviour against mal-
ware behaviour templates from the template database 302, the
tested application 101 is found to be malicious, the control
module 202 may delete this application from system 500, for
example.

An example of the operation of the system for detection of
malware is to detect on the computer system 500 a spyware
program 101, which waits for the arrival of an SMS at the
computer system 500 and reroutes it to the remote hacker’s
device. Having started this application to check its behaviour,
no events indicating a malicious function (i.e., sending of
incoming messages to the hacker’s device) will be detected in
the information gathered by the behaviour analyzer, since the
malware trigger event of an incoming SMS message is nec-
essary to activate the malicious function. Therefore, the tested
application 101 may be started in the modified virtual
machine 405a of computer system 500, and control module
202 may create in the virtual machine 4054 event(s) of the
receipt of a SMS message, in accordance with one of the
selected malware trigger scenarios. The virtual machine 4054
records information on the events caused by the execution of
the tested application 101. Since an event occurred in the
environment of the spyware program 101 that activates the
malicious function, the analysis module 301 will detect
events characteristic of malicious software in the information
recorded by the virtual machine 4054, and the spyware appli-
cation 101 may be halted and deleted.

In one example aspect, the control module 202 may select
malware trigger scenarios for testing of applications based on
the analysis of the installation package of the application
being tested for malware. For example, it is possible to ana-
lyze a list of necessary authorizations to access protected
parts of the API and interactions with other applications. The
authorizations are contained in a manifest file, which encap-
sulates the entire architecture of the Android application, its
functional capabilities and configuration. Ifthe analysis of the
authorizations shows that the application does not work with
SMS, activation events associated with the sending and

25

35

40

45

8

receiving of SMS should be eliminated from the list of mal-
ware trigger scenarios suitable for testing of this application
for presence of malware.

In another example aspect, the control module 202 may
select malware trigger scenarios for testing of the application
based on a static analysis of the application. For example,
control module 202 may analyse APIs used by the application
101 and, on the basis of this analysis, excluding from the
malware trigger scenarios those malware trigger events
whose activation does not trigger the tested application.

FIG. 6 shows an example method for detecting malware in
accordance with aspects of the present invention. At step 605,
the method 600 includes providing a plurality of malware
trigger scenarios specifying different sets of malware trigger
events known to trigger malicious behaviour in malicious
software. For example, in one aspect, scenario database 302
(FIG. 3) may provide a plurality of malware trigger scenarios.
At step 610, the method 600 includes executing a software
program in a computer environment. For example, in one
aspect, the computer environment includes a computer sys-
tem 200B (FIG. 2B). At step 615, the method 600 includes
creating in the computer environment one or more malware
trigger events specified in a malware trigger scenario for
malware testing of the software program. For example, in one
aspect, the control module 202 (FIG. 2) may create these
malware trigger events. At step 620, the method 600 includes
monitoring execution events of the software program in the
computer environment. For example, in one aspect, the con-
trol module 202 may monitor execution events via handlers
201 (FIG. 2A). At step 625, the method 600 includes deter-
mining based on analysis of the monitored execution events
whether the software program exhibits malicious behaviour.
For example, in one aspect, the analysis module 301 may
analyze program execution events. When the software pro-
gram exhibits malicious behaviour, the method 600 proceeds
to step 630 at which remedial actions are performed on the
malicious software. For example, in one aspect, the control
module 202 may perform remedial actions, e.g., blocking
program API function calls and/or quarantining the malicious
program. When the software program does not exhibit mali-
cious behaviour, the method 600 proceeds to step 635 at
which it selects another malware trigger scenario from the
plurality of malware trigger scenarios for malware testing of
the software program. For example, in one aspect, the control
module 202 may select another malware trigger scenario
from the scenario database 302.

FIG. 7 depicts an example configuration of a general-pur-
pose computer 5 that can be used to implement the disclosed
system and methods for protecting computer resources from
unauthorized access according to various aspects of the
present invention. The computer system 5 may include, but
not limited to, a personal computer, a notebook, tablet com-
puter, a smart phone, a network server, a router, or other type
of computing device. As shown, computer system 5 may
include one or more hardware processors 15, system memory
20, one or more hard disk drive(s) 30, optical drive(s) 35,
serial port(s) 40, graphics card 45, audio card 50 and network
card(s) 55 connected by system bus 10. System bus 10 may be
any of several types of bus structures including a memory bus
or memory controller, a peripheral bus and a local bus using
any of a variety of known bus architectures. Processor 15 may
include one or more Intel® Core 2 Quad 2.33 GHz processors
or other type of microprocessor.

System memory 20 may include a read-only memory
(ROM) 21 and random access memory (RAM) 23. Memory
20 may be implemented as in DRAM (dynamic RAM),
EPROM, EEPROM, Flash or other type of memory architec-

US 9,230,106 B2

9

ture. ROM 21 stores a basic input/output system 22 (BIOS),
containing the basic routines that help to transfer information
between the components of computer system 5, such as dur-
ing start-up. RAM 23 stores operating system 24 (OS), such
as Windows® XP Professional or other type of operating
system, that is responsible for management and coordination
of'processes and allocation and sharing of hardware resources
in computer system 5. Memory 20 also stores applications
and programs 25. Memory 20 also stores various runtime data
26 used by programs 25.

Computer system 5 may further include hard disk drive(s)
30, such as SATA HDD, and optical disk drive(s) 35 for
reading from or writing to a removable optical disk, such as a
CD-ROM, DVD-ROM or other optical media. Drives 30 and
35 and their associated computer-readable media provide
non-volatile storage of computer readable instructions, data
structures, applications and program modules/subroutines
that implement algorithms and methods disclosed herein.
Although the exemplary computer system 5 employs mag-
netic and optical disks, it should be appreciated by those
skilled in the art that other types of computer readable media
that can store data accessible by a computer system 5, such as
magnetic cassettes, flash memory cards, digital video disks,
RAMs, ROMs, EPROMs and other types of memory may
also be used in alternative aspects of the computer system 5.

Computer system 5 further includes a plurality of serial
ports 40, such as Universal Serial Bus (USB), for connecting
data input device(s) 75, such as keyboard, mouse, touch pad
and other. Serial ports 40 may be also be used to connect data
output device(s) 80, such as printer, scanner and other, as well
as other peripheral device(s) 85, such as external data storage
devices and the like. System 5 may also include graphics card
45, such as nVidia® GeForce® GT 240M or other video card,
for interfacing with a monitor 60 or other video reproduction
device. System 5 may also include an audio card 50 for
reproducing sound via internal or external speakers 65. In
addition, system 5 may include network card(s) 55, such as
Ethernet, WiFi, GSM, Bluetooth or other wired, wireless, or
cellular network interface for connecting computer system 5
to network 70, such as the Internet.

In various aspects, the systems and methods described
herein may be implemented in hardware, software, firmware,
or any combination thereof. If implemented in software, the
methods may be stored as one or more instructions or code on
a non-transitory computer-readable medium. Computer-
readable medium includes data storage. By way of example,
and not limitation, such computer-readable medium can com-
prise RAM, ROM, EEPROM, CD-ROM, Flash memory or
other types of electric, magnetic, or optical storage medium,
or any other medium that can be used to carry or store desired
program code in the form of instructions or data structures
and that can be accessed by a processor of a general purpose
computer.

In various aspects, the systems and methods described in
the present disclosure in terms of modules. The term “mod-
ule” as used herein means a real-world device, component, or
arrangement of components implemented using hardware,
such as by an application specific integrated circuit (ASIC) or
field-programmable gate array (FPGA), for example, or as a
combination of hardware and software, such as by a micro-
processor system and a set of instructions to implement the
module’s functionality, which (while being executed) trans-
form the microprocessor system into a special-purpose
device. A module can also be implemented as a combination
of the two, with certain functions facilitated by hardware
alone, and other functions facilitated by a combination of
hardware and software. In certain implementations, at least a

10

25

30

35

45

50

55

60

65

10

portion, and in some cases, all, of a module can be executed
on the processor of a general purpose computer (such as the
one described in greater detail in FIG. 7 above). Accordingly,
each module can be realized in a variety of suitable configu-
rations, and should not be limited to any particular implemen-
tation exemplified herein.

Inthe interest of clarity, not all of the routine features of the
aspects are disclosed herein. It will be appreciated that in the
development of any actual implementation of the invention,
numerous implementation-specific decisions must be made
in order to achieve the developer’s specific goals, and that
these specific goals will vary for different implementations
and different developers. It will be appreciated that such a
development effort might be complex and time-consuming,
but would nevertheless be a routine undertaking of engineer-
ing for those of ordinary skill in the art having the benefit of
this disclosure.

Furthermore, it is to be understood that the phraseology or
terminology used herein is for the purpose of description and
not of restriction, such that the terminology or phraseology of
the present specification is to be interpreted by the skilled in
the art in light of the teachings and guidance presented herein,
in combination with the knowledge of the skilled in the rel-
evant art(s). Moreover, it is not intended for any term in the
specification or claims to be ascribed an uncommon or special
meaning unless explicitly set forth as such.

The various aspects disclosed herein encompass present
and future known equivalents to the known components
referred to herein by way of illustration. Moreover, while
aspects and applications have been shown and described, it
would be apparent to those skilled in the art having the benefit
of this disclosure that many more modifications than men-
tioned above are possible without departing from the inven-
tive concepts disclosed herein.

The invention claimed is:

1. A method for malware testing of software programs, the
method comprising:

storing a plurality of malware trigger scenarios specifying

different sets of malware trigger events known to trigger
malicious behaviour in software programs;

in response to obtaining a software program, modifying a

computer environment for operating the software pro-
gram by creating malware trigger events associated with
a selected one of the plurality of malware trigger sce-
narios;

analyzing an execution of the software program in the

modified computer environment in response to the mal-
ware trigger events;

upon detecting that the software program exhibits mali-

cious behaviour, performing, by the hardware processor,
remedial actions on the software program, identifying
one or more malware trigger events triggering the mali-
cious behaviour, and placing the identified malware trig-
ger events in an optimized malware trigger scenario of
popular events; and

upon detecting that the software program exhibits no mali-

cious behaviour, selecting a different malware trigger
scenario from the plurality of malware trigger scenarios
for malware testing of the software program.

2. The method of claim 1, wherein the remedial actions
comprise blocking program application programming inter-
face (API) function calls and quarantining the software pro-
gram exhibiting malicious behaviour.

3. The method of claim 1, further comprising executing the
software program in the modified computer environment
using a plurality of interrupt handlers operable to monitor
application events, operating system (OS) events, and hard-
ware events of the computer environment.

US 9,230,106 B2

11

4. The method of claim 1, further comprising:

creating corresponding malware trigger events associated
with each of remaining malware trigger scenarios; and

repeating the execution of the software program in the
modified computer environment in response to the cor-
responding malware trigger events.

5. The method of claim 1, wherein executing the software
program in the modified computer environment comprises
analyzing application program interface (API) functions of
the software program and selecting from the plurality of
malware trigger scenarios a malware trigger scenario having
similar APT calls.

6. The method of claim 1, further comprising determining
and storing malicious behaviour templates in an order of
popularity, each template having corresponding malware
trigger events, wherein executing the software program in the
modified computer environment comprises identifying a tem-
plate among the malicious behaviour templates based on the
malware trigger events, and analyzing the execution of the
software program in the modified computer environment
based on defined characteristics of the template.

7. The method of claim 1, further comprising:

determining an order of popularity of the plurality of mal-

ware trigger scenarios; and

repeating the execution of the software program in the

modified computer environment in accordance with the
determined order of popularity of the plurality of mal-
ware trigger scenarios.

8. A system for malware testing of software programs, the
system comprising:

adata store storing a plurality of malware trigger scenarios

specifying different sets of malware trigger events
known to trigger malicious behaviour in software pro-
grams;

ahardware processor coupled to the data store and config-

ured to:

modify, in response to obtaining a software program, a
computer environment for operating the software pro-
gram by creating malware trigger events associated
with a selected one of the plurality of malware trigger
scenarios;

analyze an execution of the software program in the
modified computer environment in response to the
malware trigger events;

upon detecting that the software program exhibits mali-
cious behaviour, perform remedial actions on the soft-
ware program, identify one or more malware trigger
events triggering the malicious behaviour, and place
the identified malware trigger events in an optimized
malware trigger scenario of popular events; and

upon detecting that the software program exhibits no
malicious behaviour, select a different malware trig-
ger scenario from the plurality of malware trigger
scenarios for malware testing of the software pro-
gram.

9. The system of claim 8, wherein the remedial actions
comprise blocking program application programming inter-
face (API) function calls and quarantining the software pro-
gram exhibiting malicious behaviour.

10. The system of claim 8, wherein the hardware processor
is further configured to execute the software program in the
modified computer environment using a plurality of interrupt
handlers operable to monitor application events, operating
system (OS) events, and hardware events of the computer
environment.

11. The system of claim 8, wherein the hardware processor
is further configured to:

create corresponding malware trigger events associated

with each of remaining malware trigger scenarios; and

20

25

30

35

40

45

50

65

12

repeat the execution of the software program in the modi-
fied computer environment in response to the corre-
sponding malware trigger events.

12. The system of claim 8, wherein to execute the software
program in the modified computer environment, the hardware
processor is configured to analyze application program inter-
face (API]) functions of the software program and selecting
from the plurality of malware trigger scenarios a malware
trigger scenario having similar API calls.

13. The system of claim 8, wherein the hardware processor
is further configured to:

determine and store malicious behaviour templates in an

order of popularity in the data store, each template hav-
ing corresponding malware trigger events;

execute the software program in the modified computer

environment by identifying a template among the mali-
cious behaviour templates based on the malware trigger
events; and

analyze the execution of the software program in the modi-

fied computer environment based on defined character-
istics of the template.

14. The system of claim 8, wherein the hardware processor
is further configured to:

determine an order of popularity of the plurality of mal-

ware trigger scenarios; and

repeat the execution of the software program in the modi-

fied computer environment in accordance with the deter-
mined order of popularity of the plurality of malware
trigger scenarios.

15. A computer program product stored on a non-transitory
computer-readable storage medium, the computer program
product comprising computer-executable instructions for
malware testing of software programs, including instructions
for:

storing a plurality of malware trigger scenarios specifying

different sets of malware trigger events known to trigger
malicious behaviour in software programs;

in response to obtaining a software program, modifying a

computer environment for operating the software pro-
gram by creating malware trigger events associated with
a selected one of the plurality of malware trigger sce-
narios;

analyzing an execution of the software program in the

modified computer environment in response to the mal-
ware trigger events;

upon detecting that the software program exhibits mali-

cious behaviour, performing, by the hardware processor,
remedial actions on the software program, identifying
one or more malware trigger events triggering the mali-
cious behaviour, and placing the identified malware trig-
ger events in an optimized malware trigger scenario of
popular events; and

upon detecting that the software program exhibits no mali-

cious behaviour, selecting a different malware trigger
scenario from the plurality of malware trigger scenarios
for malware testing of the software program.
16. The computer program product of claim 15, wherein
the remedial actions comprise blocking program application
programming interface (API) function calls and quarantining
the software program exhibiting malicious behaviour.
17. The computer program product of claim 15, further
comprising instructions for:
creating corresponding malware trigger events associated
with each of remaining malware trigger scenarios; and

repeating the execution of the software program in the
modified computer environment in response to the cor-
responding malware trigger events.

18. The computer program product of claim 15, wherein
the instructions for executing the software program in the
modified computer environment comprise instructions for

US 9,230,106 B2

13

analyzing application program interface (API) functions of
the software program and selecting from the plurality of
malware trigger scenarios a malware trigger scenario having
similar APT calls.

19. The computer program product of claim 15, further
comprising instructions for determining and storing mali-
cious behaviour templates in an order of popularity, each
template having corresponding malware trigger events,
wherein the instructions for executing the software program
in the modified computer environment comprise instructions
for identifying a template among the malicious behaviour
templates based on the malware trigger events, and analyzing
the execution of the software program in the modified com-
puter environment based on defined characteristics of the
template.

20. The computer program product of claim 15, further
comprising instructions for:

determining an order of popularity of the plurality of mal-

ware trigger scenarios; and

repeating the execution of the software program in the

modified computer environment in accordance with the
determined order of popularity of the plurality of mal-
ware trigger scenarios.

#* #* #* #* #*

10

15

20

14

